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An asymptotic descr ipt ion is obtained for  the relaxation of an individual polymer  molecule.  

It is an ext remely  difficult problem to present  a real ly  e lementary  descr ipt ion of the relaxation p r o -  
c e s se s  taking place in polymer  s t ruc tu res ,  owing to the complicated kinematic s t ruc ture  of the polymer  
molecules .  Because of the wide var ie ty  of forms assumed by the conformational  mob i l i t y ,  the kinetic 
cha rac t e r i s t i c s  of an individual polymer  chain in solution involve an ext remely  wide spec t rum of relaxation 
t imes.  The difficulties encountered in descr ibing the dynamics  of an individual macromolecu le  theore t i -  
cally l imit the possibi l i t ies  of descr ibing the nonequilibrium proper t ies  of the polymer  in mass  form [1] 
very  severely.  

A considerat ion of the in t ramolecular  relaxation process  is of fundamental importance in the case 
of one very  important  c lass  of natural  po lymers :  proteins,  tt is well known that all the molecules  in a 
globular  protein of a par t icu lar  type assume the same conformation in solution; the molecules  are  usually 
turned into this unique (and essent ia l ly  nonperiodic) s t ruc ture  quite spontaneously from any initial confor -  
mation. It is reasonable  to cons ider  that this s t ructure  is the one corresponding to the universal  minimum 
free energy of the molecule [2]. On the other  hand, if we consider  the extremely large dimensions of the 
molecule (mol.wt.  104-105, number  of in terna l - ro ta t ion  angles of the o rde r  of 103) we may well expect that 
the relaxation process  will occupy a very  long time [3]. In actual fact, the number of local potential minima 
inc reases  on the s ta t is t ical  combination principle with increas ing number  of in ternal - ro ta t ion angles; the 
contribution of the universal  minimum to the s tat is t ical  sum is very  small ,  even if its depth relative to 
the other  (local) minima amounts to teas of ki locaior ies .  In the absence of quantitative es t imates  this 
question, never the less ,  remains  subject to discussion.  Thus, Lumry  and Biltonen [4], r e fe r r ing  to exper i -  
ments  on the spontaneous recombinat ion of sulfohydryl groups into disulphide bonds during the renaturing 
of a protein molecule ,  a s s e r t  that their resul ts  " . . . exclude all these careful ly developed kinetic theories 
based on the kinetic preference  of local s t ruc tu res  serving as nuclei for  a subsequent coagulation process  
. . . .  These data provide an adequate reason for  p re fe r r ing  thermodynamic mechanisms  of convers ion 
into the stable state,  ra ther  than the complicated kinetic al ternat ive."  

One of the severa l  possible ways of es t imat ing the o rde r  of magnitude of the " sea rch  time" required 
for  a macromolecu le  to find the universal  minimum (within the f ramework  of var ious idealized models) 
may be formulated as follows. It is well known that many problems of conformational  s ta t is t ics  are  f o r -  
mally equivalent to diffusion problems in a mult idimensional  space [1]. The analog of the potential function 
descr ibing the interact ion between a diffusing part icle  and the ambient is in this ca se  the in t ramolecular  
energy U(~ l . . . . .  q~i . . . . .  q0n), where q~i are  the angles of internal rotation. The desired kinetic p a r a m -  
e t e r s  may be est imated in te rms  of the activation energies  on the basis  of the theory of absolute react ion 
ra tes  [5]. 

Diffusion is here  considered as a random walk of the penetrant  (penetrating) part icle around the 
minima of the potential function, while the transit ion probabil i t ies are  defined by the equation for the spe -  
cific activity of the velocity constant,  
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where  n is the so-ca l led  t r ansmiss ion  coefficient ,  equal to unity fo r  the major i ty  of diffusion problems.  

It is well  known that the diffusion coeff icient  may be expressed  in t e rm s  of the cha rac te r i s t i c  velocity 
constant  K in the fo rm 

D = < ~ > K. (2) 

The act ivat ion energy for  the in t ramolecu la r  re laxat ion of a po lymer  molecule  over  a large par t  of 
the phase volume is chiefly de termined by shor t - range  interact ions;  var ious es t imates  of the activation 
energy  may be obtained on the basis  of the theore t ica l  conformation analysis  of o l igomers  [6, 7]. 

The quantity (~2) is c l ea r ly  determined by the mult ipl ici ty q of the potential function of the monomeric  
unit, 

2~ 
= - - .  (3)  

q 

At this stage we must  make some comments  on the cha rac t e r i s t i c s  of the met r i c  descr ibing the space 
of in te rna l - ro ta t ion  angles.  F i r s t l y ,  since the essent ia l  mutual relat ionship is chiefly associa ted with the 
in terna l  rotat ions in the pr incipal  chain, it is convenient  to cons ider  the se t  of the corresponding dihedral  
angles as the sole basis .  The l imitat ions imposed on this by the p resence  of mobile side radicals  may be 
taken into account by introducing an effect ive mult ipl ici ty factor  of the cor responding  potential b a r r i e r s .  

Secondly, the effects  of the phase volume excluded as a resu l t  of se l f - in te r sec t ions  may be taken into 
account by reducing the number  of dimensions in the problem,  as is cus tomary  in the conformation s t a t i s -  
t ics of po lymers  [8]. In the polypeptide case  of p resen t  in te res t  we may make use of the est imate  made by 
Knaell and Scott [9] fo r  the s ta t i s t ica l  tangle (globule) of poly-L-alanine;  these authors  obtained an e x p r e s -  
sion descr ib ing  the se l f - in t e r sec t ion  coeff ic ient  as a function of the degree  of polymer iza t ion  M in the form 

( o = 0 . 1 3 [  M - - 3  ] ~ 
t M ,+ 1.91 (4) 

Thus,  in the problem of the in t ramolecu la r  re laxa t ion  of a protein molecule  the effect ive dimensions 
of the potential  function should be taken as  being equal to 

n = 2m0), (5) 

the mult ipl ici ty of the assumed in te rna l - ro ta t ion  potential  may take any values in the range 3-6, according 
to the amino acid composi t ion of the molecule  [6]. 

L e t u s  now assume that the polypeptide molecule is charac te r i zed  by a unique universal  minimum, 
sharply distinguished as regards  depth. In the absence of kinetic fac tors  leading to the stabil ization of this 
s t ruc tu re  (model A), the potential  c ro s s  sect ion along a line of a r b i t r a r y  shape passing through the univer -  
sa l  minimum should take the form schemat ical ly  i l lustrated in Fig. la .  If any s t ruc tura l  s ingular i t ies  
d i rec t ing the se r f - a s sembly  p rocess  of the globule (model B) exist ,  the corresponding potential profile 
a s sumes  the form of Fig. lb. 

If we p roces s  adequate information regard ing  the s t ruc tu re  of the potential  function, we may in 
pr inciple  obtain a genera l  solution to the diffusion equation in d i sc re te  form [10], 

where  h i and r a re ,  
between the min ima,  

n ~  0 t~ \ 8 RT.,.tn) l.,.(n) ch (t) e -~ -~  ci ~,oJ v~ j ~ k  , 

respec t ive ly ,  the eigenvalues and e igenvectors  of the mat r ix  of mutual t ransi t ions 
the e lements  of this ma t r ix  

i=0 

(6) 

(7) 

while ck(t0) is the initial dis t r ibut ion of populations. 
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Fig. 1. Schematic representation of cross sections through a universal 
potential minimum. 

Fig. 2. Schematic representation of the original conformation and the 
universal minimum in the case of model A. 

However ,  in p rob lems  of in te res t  f rom our  p re sen t  point of view, the d imens ional  index c of the 
vec to r s  is ve ry  large,  and it  b ecom es  appropr ia te  to pass  to a continuous model.  Let  the mutual  d i sp o s i -  
tion of the de l ta - type  source  (original conformation)  and sink (universal  min imum) in the c r o s s  sect ion 
assoc ia ted  with each in t e rna l - ro t a t ion  angle be given as in the scheme  of Fig. 2a. tn the case  of independent 
re laxa t ion  with r e s p e c t  to each angle ~i  the dynamics  of the probabi l i ty  densi ty a re  de te rmined  by the p rod -  
uct of the independent densi ty functions in each sect ion,  

U (~, 0 = • " ( ~ ,  t), (8) 

where  ~i  ~ ~. 

If the or ig inal  conformat ion  co r r e sponds  to one of the ve r t i c e s  of an N-d imens iona l  cube with a side 
2A(p, having the u n i v e r s a l - m i n i m u m  in its cen te r  (Fig. 2b), the re laxa t ion  p roce s s  is descr ibed  by a diffu-  
sion equation which (in d imens ion less  independent va r i ab les )  may  be wr i t t en  in the form.  

Ou O2u 
- -  - -  ~ u N 5  ( ~  - -  %), (9) 
at a~ ~ 

which co r r e sponds  to the introduction of the d imens ion less  t ime t = Dt' and the "s tacking  constant  n 

K 1 
D <)$> 

We furthermore have the periodic boundary conditions 

ul~=0 = u!~=2= (t0) 

and the ini t ial  condition 

ul~=o ::6 (~ -- ~o). (11) 

On the t ime sca le  so defined, the exper imenta l ly  observed re laxa t ion  t imes  of the s e l f - a s s e m b l y  
p r o c e s s  a re  of the o rde r  of 104-10 s, so that it is sufficient  to obtain an e s t ima te  of the asymptot ic  behavior  
of the solution to Eq. (9) fo r  large values  of t. 
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We shah  seek  the solution to Eq. (9) in the form 

u = ~ a, (t) e ~n~. 
n ~ - - o o  

(12) 

The coeff icients  of the F o u r i e r  s e r i e s  (12) a re  determined f rom 

231 

am = 1 f ue_~m,d% 
2z .J 

0 

(13) 

The integral  t ransformat ion  (12)-(13) automatical ly  sat isf ies  the boundary condition (10) and t r an s -  
fo rms  the boundary problem (9)-(11) into an infinite sys tem of ordinary  different ia l  equations, 

da,~ _ m2a~ _ ..~_~.u~s e -~m%, - -  co < m < eo (14) 
dt 

with the ini t ial  conditions 

a . , (o )  = 1 e_~,,,~o. ( i s )  
2n 

Here  we have introduced the notation 

u.(t)~u(t, %). (16) 

Using sys tem (14), we may der ive an in tegral  equation fo r  the boundary problem (9). The solution 
to the sys tem (14), subject  to the conditions (10) and (11), takes the form 

t 

a.,(t) = 1 e_~m~.e_m,t a 2~ ~ e -ira% UsU (r)e -m'ct-~) dr. (17) 

0 

Hence,  by substituting (17) into (12), we obtain 

cr 

u(t, , ~ ) = ~ -  Z_ae - - - -  

t 

2~ Z e - i m ( % - ~ )  l u~(~c)e-tn''t-*) 
I I z~ - -ao  0 

dr, (18) 

i .e . ,  the solution to Eq. (9), expressed  in t e rm s  of the unknown function us(t). 

Putting ~0 = ~0 s in Eq. (18), we obtain a nonlinear in tegral  equation for  determining the function Us(t}, 
and hence an in tegra l  equation fo r  the boundary problem (9)-(11), 

t 

1 - - -~Iq( t - -~lu) ' (~)dr .  (19) 
0 

In Eq. (19) we have introduced the following notation: 

K , ( t ) =  ~ e-m% -"~* 
I 

rn-- - -oo 

K o ( 0 =  2 e-re't, 
t n ~ - - o o  

= % --  %. 

(2o) 

It follows f rom the numer ica l  es t imates  that Eq. (19) contains two large p a r am e te r s  t > 104-105 and 
N ~ 102-103; we must  the re fo re  find an asymptot ic  solution to the integral  equation (19). 

We note that 
co 

~ l  _ m Z t  K, ( t ) = l + 2  z.e costa% (21) 
m = l  
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and hence as t ~ 

K , ( t )  ~ _ 1 § 2e-~cos~pt + . . .  

On the other hand, it follows f rom the Poisson summation formula [11] that 

@'~ - ~ t 
/ ~ _ e - - ~ -  1 : 2  ch �9 K,  (t) = e 

m = l  

(22) 

(23) 

We obtain the corresponding resul ts  for the kernel  of the integral  equation K0(t) by putting g; = 0 in 
the lat ter  equations: 

i(o (t) = 1 @ 2 ~ e -~'~, (24) 

Ko( t ) = ~  1 - ~ 2 Z e  ' ). (25) 
r n ~ l  

tions 
Let us introduce some new variables (dependent and independent) into Eq. (19) by means of the equa- 

1 1 (26) 

and 
( 1 \ (27) 

We then write (19) in the form 

1 K , ( 4 1 _  ~ " ~ 1 1 "~vN03) d~]. (28) 

Let us consider  the behavior of the kerne[ K0[(~-f) /~V] as ~ ~ 0 (t ~ ~). 
we have 

A [lowing for (29), Eq. (28) now becomes 

F rom Eqs. (24) and (25) 

(29) 

V(~)= ~ s  -- V-a~ 1 =- 2~2e-(:~)"~]fVN(n)~ J J  dn.n 2 
\ g , m=1 

(30) 

Let us consider  the expression 

e(~) = ] / r~-[  1 =- 2 2  e-(~mP~j. 
t7l=] 

According to Eq. (25), this may be converted to the form 

rn ~ 

O(~)= I + 2 ~z2e --f ,  
rn=l  

when neglecting t hose t e rms  which diminish exponentially as ~ ~ 0 we have @(~)~ 1. 

Hence Eq. (30) may be wri t ten as follows: 

c~ 

(31) 
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Returning to the or ig inal  va r i ab l e s ,  fo r  fa i r ly  la rge  values of t we have the in tegra l  equation 

t 

0 

where  if we omi t  the exponential ly diminishing t e r m s  we may  put Kr = 1 in accordance  with Eq. (22). 

F inal ly ,  fo r  the unknown function Us(t), as  t ~ ~ w e  have the equation 

t 

1 ~z fuU(~)cl~.  .~ ( t )  2~ -2~ . 
0 

(32) 

It follows f r o m  this that 

d u  s --- u~(t), 
dt 2~ 

i .e . ,  

Us ( / ) - - (N- - l )  __ CZ 

N ~  1 2n 
- - t  + c, 

and for  la rge  t the des i r ed  asympto t ic  solution takes the fo rm 

u~(t)~ [~--~(N--1)t] N I l  (33) 

Since Us(t) is ,  in fact ,  none o the r  than the probabi l i ty  density cor responding  to the surroundings  of 
the un iversa l  ~ s  m i n i m um ,  the development  of the i n t r amolecu l a r  re laxa t ion  p r o c e s s  is de te rmined  by 
the equat ion 

o? ! 

Q(~) 1 --  ~ (t)dt = 1--  (N- -  I) a (N- -  1) --NN----~-s N--~ (34) 
2 ~  J 

and since N >> 1, we.have 
1 

Q (~) ~ 1 - -  �9 N--, (35) 

An impor tan t  c h a r a c t e r i s t i c  of the resu l tan t  solution is the universa l i ty  of the asymptot ic  stage of 
re laxat ion,  i .e . ,  the comple te  independence of the solution re la t ive  to the initial  distr ibution.  The uni-  
ve r sa l i t y  of the final s tage of re laxa t ion  was f i r s t  observed  in [12] for  physical  p rob lems  of the type under 
considera t ion .  

According to Eqs. (33}-(35}, in fact ,  the flow of the p r o c e s s  does not depend on the mutual  d i sp o s i -  
tion of the init ial  conformat ion  and the un iversa l  min imum in the space  of in te rna l - ro ta t ion  angles.  On 
the one hand, this r e su l t  jus t i f ies  our  a r b i t r a r y  specif icat ion of the init ial  dis t r ibut ion in the fo rm of a 
de l t a - type  source  a t  the ve r t ex  of an N-d imens iona l  cube; on the o ther  hand, we a lso  find just i f icat ion for  
the following impor t an t  p rac t i ca l  conclusion:  If there  a r e  no kinetic l imitat ions guiding the s e l f - a s s e m b l y  
of the globule at a l l , t he  hypothet ical  m e c h a n i s m s  "eas ing"  this p roce s s  during the b iosynthes is  of a protein 
molecule  by providing it  with a " s t a r t ing"  conformat ion  c lose  to the conformat ion  of the universa l  min imum 
[13] a r e  quite ineffect ive.  

Le t  us d i scuss  some of the numer i ca l  r e su l t s  emerg ing  f rom Eq. (35}, f rom which it  follows that 
the act ivat ion energy  AF and the effect ive number  of potential  b a r r i e r s  influence the r e su l t s  a lmos t  solely 
by way of a change in the scale  of the d imens ion less  t ime t = Dt' .  The influence of the mult ipl ic i ty  of the 
effect ive  in t e rna l - ro t a t ion  potential  may  then be ent i re ly  neglected (Table 1). 

F igure  3 shows the t ime requi red  for  half  the molecu les  to find the un iversa l  m in imum,  exp re s sed  
as a function of the number  of rad ica l s  in the polypeptide chain for  var ious  act ivat ion energ ies .  It is easy  
to see  tha t  for  c a se s  of m > 150 we shal l  be concerned with ve ry  long t ime per iods  (101~ sec or  over}, 
g rea t ly  exceeding the exper imen ta l ly  observed  rena tur ing  re laxa t ion  t imes .  
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Fig. 3. Time r (see) required for 
half the molecules  to find the uni-  
versa l  minimum, as a function of 
the number  of radicals  in the poly-  
peptide chain: a) for  ~u = 2 D = 0.98 
�9 1012; b) for  ~u = 3 D = 0.18 �9 1012; 
c) for Au = 5 D = 0.0065. I012. 

TABLE 1. Degree of Completion of the 
In t ramolecula r  Relaxation P roces s  for 
7 = 1 sec,  Expressed as a Function of 
the Multiplicity q of the Effective In-  
ternal-Rotat ion B a r r i e r  (AF = 5 kca[ 
/mo le )  

Number of 
radicals in r.he 
molecule 

I00 
200 
300 
600 

I000 

q 

2 6 

0,53 
0,31 
0,22 
0,11 
0,07 

0,56 
0~33 
0,23 
0,12 
0,08 

We may therefore  a s se r t  with complete confidence that 
the kinematic factors  involved in the formation of a protein 
globule a re  an indispensable element in the mechanism under-  
lying the real izat ion of a unique spatial s t ructure .  The foregoing 
es t imates  show that in the absence of a sys tem of in t ramolecula r  

interactions directing the globularization process the time required to find the universal intramolecular 
energy minimum corresponding to the native structure would,in the majority of cases, exceed the lifetime 
of the molecule. 

AF 

< x2> 
q 
m 

ck(t k 
Zi, ~i 
Q(r) 
N 
M 

N OTA T I O N  

is the in ternal - ro ta t ion  angles; 
is the free activation energy of the transition; 
is the t r ansmiss ion  coefficient; 
is the mean square of the distance between neighboring potential minima; 
is the multiplicity of the potential function of the monomer ic  unit; 
is the number  of amino acid radicals  in the po[ypeptide chain; 
is the population of the k-th potential minimum; 
are the eigenvalues and eigenvectors of the matrix of mutual transitions between the minima; 
is the degree of completion of the process] 
is the degree of polymerization; 
is the effective number of internal degrees of freedom in the macromolecule. 
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